
J .  Fluid Mech. (1976), vol. 75, part 3, pp .  593-607 

Printed in Great Britain 

593 

The discrete-cilia approach to propulsion 
of ciliated micro-organisms 

By N. LIRON AND S. MOCHON 
Department of Applied Mathematics, The Weizmann Institute of Science, 

Rehovot, Israel 

(Received 1 December 1975) 

The discrete-cilia approach, or cilia sublayer model, is considered for propulsion 
of ciliated micro-organisms. Natural periodicity assumptions enable us to obtain 
a readily usable expression for the velocity where dependences on the direction 
of propulsion of the metachronal wave and on the time are not averaged out. 
Thus instantaneous interaction of the cilia with the fluid is calculable, and time- 
dependent velocity profiles are obtained. Calculations show that the velocity 
above the cilia sublayer is time independent and uniform. Closer to the bases 
fluid velocity fluctuations are large. 

1. Introduction 
The problem of the moving of fluid by cilia has been given a great deal of 

attention in recent years in order to try to understand how the ciliary motion 
performs its function, whether it be propulsion of micro-organisms to which cilia 
are attached, or movement of fluids and particles through pipes whose walls are 
covered by cilia. A description and a discussion of ciliary motion together with an 
extensive bibliography can be found in Blake & Sleigh (1974), who describe the 
two models used to portray the motion of the cilia. The first is the envelope 
model, on which a considerable amount of work has been done. At velocities 
found in nature the envelope approach is concluded by Blake & Sleigh to be 
a valid model only for micro-organisms which exhibit symplectic metachronism. 
It is not valid, for instance, for the antiplectic metachronism exhibited by many 
organisms. (The reader is referred to Blake & Sleigh’s review and references 
therein for more details.) 

The drawbacks of the envelope model led recently to the so-called ‘cilia 
sublayer model ’, initiated by Blake (1972). In  this second approach each cilium is 
regarded as an elongated body (slender body), and its interaction with surround- 
ing fluid is along the lines of the now classical Gray & Hancock (1955) theory for 
flagella. Modifications have to be introduced to account for surfaces and for the 
interaction effects of all other cilia on the cilium under consideration. It is this 
model that we shall study in more detail. Since this model treats each cilium as a 
separate entity, adding up contributions to get the net effect, rather than taking 
the continuous envelope approach, we prefer to emphasize the contrast with the 
latter approach, and we call our model the discrete-cilia model. 

The first to try a model of discrete cilia were Barton & Raynor (1967). They 
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took each cilium to be a rigid rod rot’ating around its base. The length of the cilium 
was assumed to be shorter during the recovery stroke than during the beat (in 
order to produce a net directional thrust). No account was taken of the meta- 
chronal wave, and each cilium was given a range of influence. This was used for a 
model of the movement of mucus in the trachea. Later Blake (1972) gave a much 
more realistic presentation, approximating each cilium by a distribution of force 
singularities. By considering an infinite plane sheet onto which a regular array 
of cilia were attached, a-llowing for a metachronal wave and summing over all 
cilia, he obtained an expression for the resultant velocity of the fluid. (Super- 
position is allowed since this is a linear problem, a t  zero Reynolds number.) 
The unknowns are the strengths of the force singularities on each cilium. In order 
to bypass the problem of finding the unknown strengths, Blake derived an 
approximation to the mean velocity that depends only upon the height above the 
infinite sheet (the x3 co-ordinate). He then related the velocity of a cilium and the 
force it exerts by a modified Gray & Hancock approach. By inserting this into 
the expressions for the velocities of the cilium and the mean flow, and imposing 
the condition that on the cilium the velocity is the observed one (a kinematic 
description), Blake ended up with a couple of integral equations which can be 
solved numerically. (A much nicer description of this procedure is given by 
Lighthill 1975, chap. 6.) 

In  essence, Blake confined his attention to the interaction between a cilium 
and the mean flow. (The mean was taken both in a plane parallel to the sheet and 
in time.) This may be a good approximation near the top of the layer of cilia, 
where observations show only small perturbations from the mean flow, but 
further down deviations are large. Since the force exerted by a cilium that beats 
in a certain fashion depends on the relative velocity of fluid and cilium, the 
instantaneous velocity has to be considered rather than the mean velocity. 
Also the dependence on the direction of the metachronal wave (the x1 direction) 
should not be averaged out. 

Here we overcome the drawbacks of Blake’s approach, and present a readily 
usable expression for the velocity. We average only in the direction perpendicular 
to the metachronal wave, i.e. in the direction in which all cilia are in phase (the 
x2 direction). We solve directly for the strength of the force singularities, without 
employing the Gray & Hancock theory. A discussion of the results and a com- 
parison with Blake’s results are given in the last section. 

2. The model: array of cilia 
For ease of following this paper, we shall ‘borrow’ Blake’s notation as far as 

possible. We consider a regular anay of cilia bases on the infinite plane defined 
by x3 = 0,  (xl, x2, x3) being Cartesian co-ordinates. The spacing between cilia 
is a in the x1 direction and b in the x2 direction, and we suppose that the cilia beat 
(essentially) in the direction of increasing xl. We shall assume that a metachronal 
wave is propagating in the (positive or negative) x1 direction such that all cilia 
having the same value of x1 are in phase with each other. Thus we are modelling 
either symplectic or antiplectic metachronism. It is important to note that each 



Propulsion of ciliated micro-organisms 595 

and every cilium goes through exactly the same cyclic motion; the only difference 
may be a phase difference. Define the co-ordinates of the centre-line of the cilium 
a t  the origin (which we may choose arbitrarily in the plane x3 = 0 )  as 

g(s, t ,  = t ) ,  E2(s j  t ) ,  5 3 ( s ,  t ) ) ,  6 < L, < 6 T, (2.1) 

where s measures the length of the cilium’s centre-line from its base and t is the 
time. For a fixed s, the ti are periodic with period T. 

We now model the metachronal wave as follows: the co-ordinates of the 
centre-line of a cilium based at  the point (ma, nb, 0 )  a t  time t are given by 

SL,n(s, t )  = (ma+ 5l(s, ~ r n ) ,  nb + E d s ,  T m ) ,  &(S, ~ r n ) ) ,  (2 .2 )  

where 7 ,  = K(ma) * Ct. (2.3) 

The metachronal wave is symplectic when we use the minus sign in (2.3) and 
antiplectic when the plus sign is used. Thus the metachronal wave has velocity 
c = C / K ,  wavelength 2 n / ~  and frequency a/27~. The period T = 2n/r. 

If G$(x,  g), j = 1,2 ,3 ,  is the velocity (Green’s function) a t  x for a Stokeslet 
situated a t  5 pointing in the k direction (k = 1 , 2 , 3 ;  Cartesian co-ordinates) and 
such that the no-slip condition is satisfied on the plane x3 = 0,  then the total 
velocity induced by all cilia is given by 

Here, each cilium is approximated by a distribution of Stokeslets along its 
centre-line of variable strengths Fk, depending on direction, position on the 
cilium and time. The net velocity is found by summing over all cilia. The Green’s 
function needed here is given by Blake (1971, 1972) as 

where a = 1,  2 and r and R are defined as 

Blake assumes the strength of the force singularity distribution F to be equal 
along lines parallel to the x2 axis, but variable in the x1 direction. How the force 
varies in the x1 direction is not specified. 

It is reasonable to assume that F varies in the x1 direction just like the meta- 
chronal wave. In  other words 

F(Ek,&> t ) )  = FEn*l,&, t - At)). (2.7) 

This condition means that whatever force act,s on the cilium based at (ma, nb, 0) 
38-2 
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at time t acted on the cilium based a t  ( (m-  l ) a ,  nb, 0 )  (for symplectic meta- 
chronism) or ( (m + l )  a, nb, 0) (for antiplectic metachronism) at time t - At. 
Here At is the time it takes the wave to travel a distance a, so that At = aK/a .  
The condition that F be equal along lines parallel to the x2 axis is 

Under these conditions we get 

which can be inserted into (2 .4) .  This follows since conditions (2 .7 )  and (2 .8 )  
can be written explicitly as 

F(ma +El@, 7m), nb + E 2 h  T,), 536% 7,)) 

= F((mk 1)a+51;(s,T,),nb+52(s,T,),f;3(s,T,)) 
= F((ma+E#,Tm), (n+ 1)b+~2(s ,7 , ) ,53(S ,Tm)) .  (2.10) 

The physical interpretation of the above conditions is that we are actually 
demanding a one-to-one correspondence between the flow (and forces) and the 
configuration of the cilium (or cilia). These are conditionson the forces themselves, 
which are the unknowns. It is more appropriate to assume that, because all cilia 
beat alike, the array is regular and periodic and there is no phase difference in the 
x2 direction, the velocity is periodic with period b in the x2 direction. For the 
same reaons, since there is a phase difference in the x1 direction, the velocity in 
the x1 direction is periodic with period a, but with a time difference of At, the time 
it takes the wave to travel the distance a. The following periodicity is therefore 

(2.11) 

At = aK/g, (2.12) 

with the plus sign for antiplectic and the minus sign for symplectic metachronism. 
Conditions (2.1 1 )  and (2 .12)  state the simple fact that, if one looks at a point 

x a t  time t ,  one cannot distinguish it from the point x + (0, b, 0) at the time t or 
the point (for symplectic metachronism, say) x + (a,  0,O) a t  time t +At ,  the time 
at which each cilium reaches the configuration (and velocity etc.) that the cilium 
before i t  (looking in the +x, direction) was in a t  time t. Notice that condition 
(2 .7 )  or (2 .11)  does not imply that F or u depends on x1 and t only through 
x,-cct. The function u = (x-~t)c0~(2zrx/a) satisfies the identity 

u(x + a, t )  = u(5, t - ./c), 

with a and c given and fixed, and is not a wave. If we also assume a one-to-one 
correspondence between force distributions and velocity fields then conditions 
(2.11) and (2.12) are equivalent to (2 .7 )  and (2.8); see appendix. We therefore 
take (2.9) and insert it  into (2 .4) ,  the expression for the velocity field. We now 

Uj(X, t )  = : 5 joLF.(S(s, 7,)) G 3 x ,  ds. (2.13) 

In  order to simplify calculations, since for some cases b is much smaller than a 

get 

n=-m m=-m 
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and there is no phase difference in the x2 direction, we shall average in the x2 
direction. Because of the periodicity in the x2 direction [see (2 .11 ) ] ,  we get for 
the mean velocity 

W 
- 
uj(xl, %3, t ,  = ( l /b)]obd% m=-m c 12c-m /oLFk(5(s, 7m) )  Gik(x, EL,,) 

= ( l / b )  5 1: Fk(5rn) ( Sm ~ j ” c . 9  4m,o)dx2)ds* (2 .14)  

Here 5, = g(s, rm), and the last line follows since GF(x, y) depends on x2 and y2 
only through their difference. 

(2 .15)  

i.e. we have m, different ‘positions’ of cilia in one wavelength, and then the 
pattern repeats itself. Let 

m= -W -co 

Let the wavelength be 
= m,a = 2nlK, 

m = q m , + r ,  r = 0 , 1 ,  ..., m,-1, q = O , i 1 , & 2  ,..., (2.16) 

then r, = Kma & at = 2nq +Kra 2 at. Since g is periodic with frequency a / 2 n ,  

(2 .17)  we get 

Inserting (2.17) into (2.14) we get 

~ ~ ( s ,  7,) = ~ ~ ( s ,  Kra k at) ii 6: (s, t ) ,  r = 0, I ,  . .-, m, - I .  

(2 .18)  

where the kernel Hi” is given by 
C O W  

Hjk(x,z, 5) = c GFCx - qm,a, x2, 2, El ax2. (2 .19)  
q = - w / - W  

If we wanted also to take a mean in the x1 direction we should get 

(2 .20)  

j = 3 ,  

where K is the kernel given by Blake (1972) [see (2 .22) ] .  If in addition we wanted 
to take the mean over a time period, then since all are periodic in time with the 
same period, all m, integrands would have the same time mean, and we should 

(2 .21)  

get 1 L  q g ( %  If: gt))Jqx3,5&, *a t ) )ds ,  j = 192, 
Uj(X3) = pJ-o 

0, j = 3, 

the bar denoting a time mean. The kerneI K is 

(2 .22)  
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Notice that this is identical with Blake’s result only for completely syn- 
chronized motion. For symplectic or antiplectic metaohronism Blake has a 
weight function under the integral sign which depends on the wave, but then his 
expression is only an approximation. We see here that (2.21) holds for any meta- 
chronism. Indeed, this is what is to be expected. The problem is linear, so all 
cilia go through exactly the same cycle. Since their motion differs by only a time 
phase, integrating over a time period annihilates the phase differences, and one 
should get the same result as when they are all in complete synchrony. Also, 
because of incompressibility we certainly have 5,(x3, t )  5 0,  independent of the 
wave. The difference in metachronism does not manifest itself explicitly, but 
through the force distribution, which differs for different waves in order to 
achieve the same movement of the cilia as is kinematically described. This is 
because the force depends on the difference between the velocity of the cilium 
and the velocity induced by all other cilia (each moment) and different waves 
mean that the cilium ‘sees’ different induced velocities. 

3. The kernel Hi” 
The expression (2.18) for the velocity is practical only if one can get an expres- 

sion for HF, defined in (2.19), that is amenable to calculations: this will be done 
in this section. HF is transformed into an exponentially decreasing series, easily 
calculated. The h a 1  result is as follows: 

= H i  = H i  = H i  = 0, (3.1) 

(Sj, + Sj,) 53 + ( 1  + Sj2) c cos ( v 4 )  exp ( - x 3 a 4  sinh (53Ka) lKa 

m 

q=l 
m + (ajl - Sj3) Z cos ( q ~ q )  exp ( - x 3 p )  [t3 cosh C 3 ~ q  - x3 sinh C 3 q ]  

q= 1 
m 

where q = x1 - cl. For x3 < c3 interchange x3 with E3 : 

m + X sin (q~p)  exp ( - x 3 q )  [x3 sinh C 3 q  - t3 cosh 5,Kq]), C3 < x3. (3.3) 

The minus sign is for the first pair of indices and the plus sign for the second pair. 
Again, for E3 > x3 interchange x3 and c3. Note that HF does not depend on &, 
which is as should be, and depends on x1 and 5, only through their difference. 

As an example we show the derivation of one part, the terms r-l- R-1 in 
Gr; see (3.5) and (2.6). By the Lipschitz integral (see Watson 1948, p. 384) 

1 1  
r R  

q = l  

= 2 fom J,(hp) exp ( - x3h) sinh A t 3  d h ,  c3 < x3, p2 = (xl - [1)2 + (x2 - &)2. 
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FIUURE 1. The kernel ApH; 2,s. x3 for various 7, and K vs. x3, for K = 0.3, [, = 5.0. 
All quantities in ,urn. See (3.2). 

For this part of H:(xl, x3,  g)  we get 

a: = 2 5 /om sinh A t 3 /  Jo{A[(xl - qm,a - $1)2 + (5, - 52)2]4} dx, 
q = - w  --m 

Since 
xexp(-z3A)dh. (3.5) 

2 
h 

J,[h(x2 + y2)&] dy = -cos Ax (3.6) 

(see Watson 1948, p. 417), we get 

A-l sinh ( A t 3 )  exp ( -Ax,) cos [h(q - qmoa)] dA, q = x1 - tl. (3.7) 

Using Poisson’s summation formula in the form 

w 

K C f(q) = q=--m Im -m  f(h)exp ( - 2 n - i l q ) d A ,  
q=--m 

we can write 

@ = 2 5 A-lsinh ( A t 3 )  exp ( -  IAlx3) cos [h(q -m,aq)] dh 
q=--m -m  

w m  

= 2 22 1 A-lsinh (hE3) exp ( - lhlz3) cos {hq) exp 
q=-w --m 

m 

= 2~ C ( q ~ ) - l  sinh (t3q) exp ( - x3 lq[) cos q ~ q  
q=--m 

m 

= 2 ~ { t ~  + 2 C ( ~ q ) - l  sinh (t3q) exp ( - x 3 q )  cosq~q}, (3.9) 
q = l  

which is in the desired form. 
To show the difference between the kernel H and the kernel K given by Blake 

(1972), we plot H:, Hi ,  Hg and H i  compared with K in figures 1 and 2. Blake & 
Sleigh (1974) quote values of 1-4Hz for the frequency and 100-400pm/s for the 
velocity of the metachronal wave of Opalina. If we take the values 2 Hz and 
100pm/s, the wavenumber K w 0.12. For Paramecium Blake & Sleigh quote a 
value of 10 ,urn for the wavelength, so that K z 0.63. We shall consider a typical 
value of K = 0-3. The lengths of cilia are 10-15 pm so we shall consider values 
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FIGURE 2. The kernels (a) ApHt, (6) ApH:, (c) A p e  and (d)  A p e  us. x3 for various 7, and 
K us. x3, for K = 0.3, & = 10.0. All quantities in ,urn. See (3.2). 
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of 5, up to this range. H i  lies close to H,3, and is closer the larger c3 is. This is 
apparent from (3 .3) ,  so we shall not reproduce H i  here. As can be seen in the 
plots of H: and H;, K is a good approximation when x3 is not close to &. Devia- 
tions are larger the smaller 7 (=  x1 - &). The variation with 7 is bounded by 
Y K  6 n- as is evident from (3 .2 )  and (3 .3 ) .  Deviations are particularly large for 
H i  and Hg compared with K = 0 when averaged. This near-field behaviour is 
important in the interaction of a cilium with itself and its close neighbours. 
Such interaction appears in the integral equation to be solved in order to get the 
force distribution, equation (4 .1 ) ;  see t,he following section. 

4. Integral equation for the velocity (or force) 
Generally speaking, one would have to take the expression (2.13) for the velo- 

city and demand that for every instant t and every point on every cilium the 
velocity matches the observed velocity. This gives an integral equation for the 
force densities. Blake takes the mean velocity (mean over x1,x2 and t )  and 
interacts i t  with a cilium, using the Gray & Hancock theory to replace forces by 
velocities. Instead, since we are taking a mean in the x, direction, we shall use 
expression (2.18),  and demand that, a t  time t ,  for every point that is on a cilium 
the velocity is the observed cilium velocity. Since we have taken a mean in the 
x2 direction, there is no singularity. As there are m, different cilia in one wave- 
length, this should be true for all these cilia. Explicitly we therefore demand 

n = 0,  1 ,2 ,  ..., m, - 1 ,  (4 .1)  

where & is d e h e d  in (2 .17) .  This then is the integral equation for the force 
distribution, which can be solved. Once the forces are known they can be insertfed 
into (2.18) for any xl, x3 and t .  Of course we could follow Blake, replacing forces 
by appropriate velocities, and proceed from there. Details can be found in his 
paper. One should note that averaging in the x2 direction does not mean that 
;II, is zero. 5, in fact does not vanish, if 3, 9 0, since H i  9 0, and depends on 
xl, x3 and t .  

Equations (2 .18)  and (4 .1 )  are non-dimensionalized by taking L as the length 
scale, VL as the velocity scale, v - ~  as the time scale and pvL2 as the force scale. 
Equation (4 .1)  now becomes 

B = b / L ,  n = 0 , 1 , 2  ,..., mo-1, (4 .2 )  

where all quantities are non-dimensional. This equation was solved numerically, 
and the numerical details are discussed in the next section. 
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FIGIJFLE 3. The model for the cilium beat (reproduced by the computer) for one wave- 
length. Increasing numbers indicate positions of the cilium in consecutive time intervals ; 
AIL = 1.4. 
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FIGURE 4. Components of forces in x1 and x3 directions for cilia numbers 5, 6 and 7 in 

figure 3. Arbitrary units. 

5. Numerical results 
5.1. Description of the moviitg cilium 

In  order to describe the moving cilium, we discretize it, taking N intervals of 
length A S  = N-l, with the midpoint representing the interval. For a fixed point 
sk, we write the periodic movement of that point as a Fourier series in time: 

M* 

n= 1 
ti(+, t )  = Z [ani(sB) cos nt + bni(sk) sin nt], i = I, 2,3, 

Sk = ( k - * ) / N ,  k = 1,2, ..., N ,  (5.1) 

where ani(sk) and bni(sk) are found by fitting to the path of the cilium. One then 
extends this to 

(5.2) 
&fa 

&(s, t )  = x [a,,(s) cos nt + b,,(s) sin nt], i = I,  2,3, 
n=l 

by fitting each ani(sk) and b,(s,) to a polynomial in s of order M,; 

a . = x Ma Animsnz, b,, = nl, 2 Bnimsm. 
na 

m= 1 m = l  
(5.3) 
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FIGURE 5. Computer calculations of velocity profiles, depending on the number of points 
taken along each cilium to represent it: - , 6 points; - - -, 9 points; - - - - - -, 
12 points N 16 points. 
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FIGURE 6. (a) The velocity component U,(z,, x3) and ( b )  the velocity component Z3(xl, x3) 
for various values of xl. The beat is given in figure 3. 
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The velocities Zl (solid curves) and Us (broken curves) vs. x1 for various heights 
above the sheet. The beat is given in figure 3. 

This is done by a least-squares procedure. In  our numerical calculations we took 
ill2 = 3 .  Notice that this procedure is identical to that of Blake (1972). It is 
important in our opinion not to introduce unnecessary complications and diver- 
sity, unless absolutely necessary. In  this case Blake's procedure is reasonable 
and there is no need for a different one. 

In  order to demonstrate the technique, we chose a cilium beat from Machemer 
(1972), which shows apparent two-dimensional antiplectic metachronism for 
Paramecium, as given in figure 3.  Figure 3 shows the different cilia in one wave- 
length, which of course corresponds also to different positions of one cilium at 
fixed time intervals during one time period. Increasing numbers represent 
increasing time. 

5.2. Solution of integral equation 

In  order to solve for the forces in (4.1), we replace the integral by a quadrature 
formula (we used the midpoint rule using the points sk). We thus get a set of 
3m0N linear inhomogeneous equations in 3m0N unknowns: the forces. The 
solution for the forces is exhibited in figure 4, for time steps 5, 6 and 7 of the 
cilium. The forces are shown in component form, the force being the vectorial 
sum at each point. Forces are seen to be larger during the early stages of the beat 
than towards the end of the beat. 

5.3. Velocity profiles 

The dependence of results on the number of points taken along the cilia is 
exhibited in figure 5. (This is a different beat from the one in figure 3. )  

Velocity profiles ;i2, and U3 are given in figures 6(a )  and ( b ) .  These show the 
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great variability in space (or time) of the velocity. Notice however that U3 -+ 0 
and iil -+ U ,  the propulsion velocity, towards the top part of the ciliary sublayer, 
practically independently of time and position along the wave (independently 
of xl). This beat thus indeed induces uniform motion of the fluid above the 
cilia sublayer. The fluctuations can be seen in figure 7. These are especially large 
near the bottom third, being of the same order as the velocity of propulsion itself. 

6. Discussion 
We have presented here a model for the cilia layer which depends both on time 

and on distance in the direction of the metachronal wave. This was achieved by 
appropriate periodicity assumptions about the velocity: conditions (2.11) and 
(2.12). By averaging only in the x2 direction we obtained for the velocity the 
expression (2.18), 

compared with the expression obtained by Blake (1972), 

(6.2) 

L 
W x 3 )  = &lo 2 0 ,  t )  Wx3, 63(s, t ) )  2?,(5(s7 t ) )  ds + O(ab/L2) gL, a: = 1 7  2, 

U3(x3) = O(ab/L2) vL. 

(6.3) I synchronized, 
w(s, t )  = [1 - ~ - l a 5 ~ / X J - ~ ,  symplectic, 1“ [1 I- ~- la<~/a t ] - l ,  antiplectic. 

K is given in (2.22) and H in $3.  
There are two major differences between the above two expressions. The first 

concerns the kernel H as compared with K. Comparisons of H and K can be seen 
in figures 1 and 2. For Hi ,  H: and H:, Blake’s kernel is zero but ours is not; see 
figures 2 ( c )  and ( d ) .  K is seen to approximate H i  and Hg nicely, except when 
Izl-EII,I is of the order of t3, and near x3 = E3. Deviation in that region may be 
large since Hi(x,, x3, El, c3) = CQ. These deviations are important since the 
interaction of a cilium with itself and its closest neighbours falls within this 
region. 

The second major difference is that the velocity in (6.1) consists of a sum over 
the different positions of the cilia in one wavelength rather than the wave- 
modified kernel given by Blake. It is interesting to note that, if we average our 
velocity expression (6.1) over z1 and t ,  we obtain Blake’s expression (6.2) with 
O(ab/L2) SE 0 and w(s, t )  = 1 for all waves; see (2.21). Disregarding the error 
terms we see that our averaged velocity coincides with Blake’s when c-lac,/at is 
small. Under this condition, our velocity field is a direct extension of Blake’s 
velocity field. 

The importance of obtaining a time-dependent velocity stems from the fact 
that the force a cilium has to develop is directly proportional to the difference 
between the velocity the cilium ‘sees’ and the velocity it actually has (Gray & 

Here 
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Hancock theory), and therefore one has to look at the instantaneous velocity 
rather than at the mean velocity. The time-dependent velocity profiles in 
figures 6 and 7 confirm this, as deviations are seen to be very large, and both 
positive and negative. Also, the velocity in the x3 direction in the bottom part 
of the cilia layer is of the same order of magnitude as the propulsion speed, 
whereas in Blake’s approach this velocity is zero. 

The calculations show that the velocity immediately above the cilia layer is 
uniform and almost time independent (see figure 7),  as observed experimentally. 

Appendix 
We first show that the periodicity assumptions (2.11) and (2.12) imply 

conditions (2.8) and (3.7) respectively. To show (2.8) write down condition 
(2.11) using (2.4): 

3- 
m=-m n=-- 

where b = (0, b, 0) .  Shifting the dummy index n by one gives 

W 

9: m=-m ?; n=-m Z /oLFk(g6,n+l(s,  t ) )  G?(X +b, g;,n+l(S, t ) )  ds. 

G:(x, y) depends on x2 and yz is only through x2 - y2 [see (2.5)], so that 

W 

9 = c 2 loL Fk(gk,n+l (s ,  t ) )  ~ j k ( X ,  ~ , n + l ( s ,  t )  -b)  
w=-m n=-w 

co 

= m=-co c. %=-a 5 /oL4(5L,n+As> t))Gik(X, Gk,(% t ) )  fh-. 

Subtracting the last line from the first, we get 

0 -  c. 5 j ’L [Fk(gk,n(s ,  t ) )  - q c i ; c ( ~ , n + l ( s ,  t ) ) ~  ~ j ” ( x t  gk,n(s, t ) )  ds* 
m=-w n=-w 0 

By the assumption of a unique force distribution for a given velocity field, it  
follows that the expression in the square brackets must vanish for all m and n. 
This is condition (2.8). 

To get (2.7) one follows similar lines, again noting that G,k(x,y) depends on 
x1 and y1 only through their difference. Since the dependence on time is through 
E,(s,T,), for every m (and n) the shift of the dummy index m is cancelled by 
appropriately adding or subtracting At (=  Ka/cr) .  Thus, again assuming unique- 
ness, one arrives a t  the first part of (2.10), which is equivalent to (2.7). 

To show that (2.7) and (2.8) imply (2.11) and (2.12) take the expression for the 
velocity (2.4) written as in (2.13), and again use the condition that G F ( x , y )  
depends on xl, yl, x2 and y2 only through x1 - y1 amd x2 - y2 and shift the appro- 
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priate dummy variable summed over. For example, for symplectic meta- 
chronism 

m 

u ~ ( x I  - a, ~ 2 ,  ~ 3 ,  t - At) = 2 5 IOL &(WKma-( t -At ) ) )  
m=-m n = - m  

x G?(x, - a, x2, x3, gk,n(s, t - At)) ds. 

Use of rrAt = Ka,  (2.2) and (2.3) and shifting m by one shows that the right-hand 
side equaIs 

m 

c 5 J X E ( ~ ,  7,)) G?(X - a, c;,n(s, t )  - a) ds, 
m=-m n = - ~  

where a = (a, 0 ,  0), and by the invariance of GF, this in turn equals 
m 

I; ~ k ( ~ ( s ,  7,)) G t ( x ,  gA,n(s, t ) )  ds = uj(x, t) .  
m=-m n = - ~  
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